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The pseudopotential techniques present some degrees of freedom, the influence 
of which on molecular calculations must be tested to assess the stability and 
accuracy of the results. The present work uses a semi-local pseudopotential 
extracted from near Har t ree-Fock atomic calculations; the shape of the inner 
part  of  the pseudoorbital, the analytic form of the pseudopotential are shown 
to have less influence than the choice of  the valence basis set which must be 
optimized. The calculated molecular constants perfectly agree with the large 
basis set all-electron calculations, even for polar molecules. 
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1. Introduction 

The past few years have seen a rapid development in the application of pseudo- 
potential techniques to molecular calculations [1, 2]. The results obtained by most 
authors show that valence-electron calculations using pseudopotential formalisms 
reproduce all-electron values within a few percent. 

The determination of pseudopotential operators in which explicit orthogonality 
constraints between core and valence spaces are removed implies a lot of arbitrari- 
ness. The aim of this paper is to study in molecular calculations the influence of 
some degrees of freedom in the determination of semi-local potentials. The first 
arbitrariness is the reference atomic calculation, the second one is the shape of the 
pseudo-orbital which reproduces the outer part of  the valence orbital and the third 
one is the analytical expression which represents the effective potential. 
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Different pseudopotentials corresponding to various choices of the above men- 
tioned degrees of freedom were tested through molecular calculations at the SCF 
level using moderately extended valence basis sets. Calculations were restricted 
to the following closed-shell diatomic molecules HF, AIH, HCI, A1F, A1C1, F2, C12. 
The case of molecules containing heavier atoms was disregarded because accurate 
all-electron Hartree-Fock calculations are very sparse. The comparison with 
double-zeta type all-electron calculations would be less significant because valence 
orbitals are better described in valence-electron calculations than in all-electron 
calculations as previously discussed [3]. 

2. Determination of Atomic Pseudopotentials from Near Hartree-Fock Solutions 

In pseudopotential methods, the total valence Hamiltonian of an atom is in atomic 
units (a.u.) 

Ops = ~ .  - + Wps(i + - - .  (1) 
i = i  i < J  / ' i j  

Nv is the number of valence electrons. The pseudopotential Wp~ is a fixed one- 
electron operator which takes into account the interaction of the valence electrons 
with the core of the atom consisting of the nucleus and the electrons of the inner 
shells. 

Various methods have been developed to determine pseudopotentials from atomic 
calculations or experimental energies [1]. In this work we use new semi-local 
pseudopotentials derived from extended basis set Har t ree-Fock-Roothaan calcula- 
tions according to the scheme proposed by Barthelat and Durand [4, 5]. 

2.1. Pseudoorbitals  

The first step in the method is the generation of a valence pseudoorbital q'v for each 
angular momentum l. They are nodeless orbitals and they reproduce best the true 
Fock valence orbitals gov from a chosen core radius Ro to infinity. The radial part of 
q~v must decrease monotonically towards zero as r goes from Ro to 0. 

In previous work the radial parts of the pseudoorbitals were obtained by minimizing 
the function 

f = (4~ - ~v I ~  - ~)Ro-, = (2) 

in which the radial integration goes from Ro to infinity with the constraint 
( ~  I ~v) = 1. The reference valence orbital ~o~ were of double-zeta quality. 

The use of such a criterion is not sufficient to yield nodeless pseudoorbitals when 
the true orbitals are expanded over an extended basis set. In this work we propose 
to eliminate spurious oscillations in the core region by using an additional constraint 
which enforces ~ to behave like the radial part of a Slater orbital q~s near the 
nucleus. 

~s = N r " - I  e-r Y,m( 0, ~o). (3) 
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This is obtained by minimizing 

f '  = Af + (1 - A)<r - ~ 1r - ~b~>o~R<Ro" (4) 

h is a weight coefficient with a typical value of ,~ = 0.2; R is chosen as Ro/2. This 
criterion allows us to choose the shape of the pseudoorbitals near the nucleus. 
This point seems to be particularly important for the s-symmetry orbitals. The 
choice n = 1 or n = 2 in Eq. (3) leads to a non-zero or zero amplitude for the 
radial part  of  the orbital at r = 0. In Fig. 1 we present the resulting s-symmetry 
pseudoorbitals for the aluminium atom with the various choices n = 1, n = 2 
compared with the true orbital and the previously derived "double-ze ta"  pseudo- 
orbitals. 

2.2. Semilocal Pgeudopotentials 

In a second step the atomic pseudopotentials Wps are obtained by requiring that 
the solutions e~, r of  the Hamiltonian of the atom (Eq. 1) should be ev, r e v is 
the true eigenvalue of the Fock operator and r the above defined pseudoorbital. 
This is achieved by minimizing the norm of the operator 

( 4 1 r 1 6 2  - (5) 
v 

The pseudopotentials are written in a semi-local form 

Wps = -z_ + ~ Wz(r)P, (6) 
r l 

in which Pz is the projector over the lth subspace of the spherical harmonics, z = Nv 
is the number of  valence electrons and W~(r) is a radial function characterizing the 
l angular symmetry 

Wz(r) = ~ C,r ~, e-"'2. (7) 
i = 1  

It  must be noted that the properties of W,(r) are closely related to the analytical 
form of the pseudoorbital near the nucleus. For example in the case where the 
pseudoorbital is exactly a Slater orbital the potential would be 

W~(r) = n(n - 1) - l(l + 1) ~n (8) 
2r 2 r" 

For the choice n = l + 1, Wz behaves like l/r whereas it behaves like l/r 2 in the 
other cases. Therefore it seems that the analytical dependence of Wz(r) must be 
linked to the arbitrary shape of the pseudoorbital near the origin. 

The various atomic potentials tested in this paper are reported in Table I. The 
different potentials labelled I are derived from Hart ree-Fock "double-ze ta"  wave 
functions and are very similar to those previously published [6]. The other ones 
from II to V are extracted from the near Hart ree-Fock Clementi's atomic data [7]. 
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Fig. 1. Aluminium atom s-symmetry. HF:  radial part of the valence Hartree-Fock all-electron 
orbital, I: radial part of the pseudoorbital determined from double-zeta atomic calculation 
according to previous procedure [6], II and III: radial part of the pseudoorbitals determined 
according to the procedure presented in this paper. II behaves as r e -~T for r <~ R~/2, III behaves 
as e-  ~ for r <~ Ro/2 
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Table 1. Parameters for the radial components of the atomic pseudopotentials W, = e -  6,2~, C~r"~ 

Atom l Type S ~ nl (71 n2 Cz n3 C8 

F 0 I 1.57675 - 2  1.22780 2 -1.42491 
II 5.76091 - 2  2.54831 2 -0.59995 

III 13.2013 - 1 2.39984 0 55.6708 
IV I4.2200 0 73.4875 2 0.0002 

1 I 17.2852 0 -3.60619 
II 34.0224 0 -9.20504 

III~ 32.4647 0 -8.77959 
IV)  

A1 0 I 0.40062 - 2  2.50888 2 -0.09611 
II 2.71212 - 2  0.29754 0 36.7735 2 

III 2.64035 - 1 0.78427 0 18.8093 2 
IV 2.78095 0 15.0366 2 24.491t 4 
V 2.79336 0 9.37867 2 32.0584 4 

1 I 0.30587 - 2  1.63343 2 -0.0385 
II 1.87755 - 2  5.60117 2 7.57783 4 

III~ 1.31738 - 2  5.11990 2 2.45098 4 
IV~ 
V 1.91642 - 2  1.22203 2 10.1706 4 

. 1.13022 0 - 1.00782 

CI 0 I 0.80270 - 2  3.09806 2 -0.54632 
III 6.32177 - 1 6.81352 0 -8.43637 2 
IV 4.89029 0 42.54261 2 37.7677 

1 I 0.75390 - 2  2.13242 2 -0.33528 
III~ 
IVJ  4.57212 - 2  2.26586 2 67.5997 4 

2 I, IV 7.23767 0 - 14.57895 

0.02726 
15.67308 
0.00012 

-0.39084 

-0.96018 

-0.69105 

-0.27317 

279.1392 

-8.12875 

a I, from double-zeta atomic calculations; II-V, from near Hartree-Fock atomic calculations 
p-pseudoorbital behaves as r e -~' for r < Ro/2; II, s-pseudoorbital behaves as e -~' for r < Ro/2; 
III, s-pseudoorbital behaves as re -~" for r < Ro]2; IV, differs from III in the analytical form of 
W~(r); V, from atomic calculation of the positive ion. 

They were derived f rom different choices of  the inner part  o f  the pseudoorbi ta l  

according to the criterion (4) with different analytical forms for W~. The character-  

ization of  these various potentials is indicated in Table 1. 

3. Atomic Calculations. Determination of Gaussian Valence Basis Sets 

The above described procedure leads to pseudoorbi tals  which are expanded over  

the whole all-electron basis set. Therefore it is necessary to determine valence basis 

sets in order to take advantage o f  the pseudopotent ia l  representation o f  the core 

electrons. Since our molecular  programs work with Gaussian functions we opti- 

mized Gaussian valence basis sets in the valence a tomic calculations using the 

various effective potentials given in Table 2. Fo r  each symmetry, a set o f  four  

Gaussian exponents was derived in order to minimize the total  valence energy of  
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Table 2. Hartree-Fock reference one electron energies eaF in atomic units and deviation Ae 
resulting from the resolution of valence Hamiltonians using effective potentials I-V 

Calculation 
character- 
ization ~ Fluorine Aluminium Chlorine 

gHF b 

A~c 

-1.57254 -0.72388 -0.39340 -0.21002 -1.07311 -0.50652 
I 44 -5.95 6.23 -0.48 0.24 -0.83 0.34 

II 44 5.15 4.93 0.27 0.24 
II 55 2.37 3.24 - -  - -  

III 44 5.66 6.65 -0.24 -0.06 - 1.48 0.58 
III 55 3.65 4.36 - -  - -  -2 .20 0.26 
IV 44 10.52 4.80 -0.31 0 1.86 0.70 
IV 55 3.68 3.95 - -  - -  0.65 -0.04 
V44 - -  - -  0.18 0 - -  - -  

a Pseudopotential type (see Table 1) and number of Gaussian primitives in symmetry s and p. 
b In atomic units. 
~ In 10 -3 atomic units. 

the a tom.  The deviat ions o f  the Fock  valence opera to r  eigenvalues f rom the corre-  
sponding H a r t r e e - F o c k  one-electron levels are repor ted  in Table  2. The greater  
discrepancies occur in the case o f  the fluorine a tom bu t  this is essentially due to the 
use o f  a l imited number  o f  Gauss ian  functions instead o f  Slater funct ions as shown 
by the equivalent  al l -electron results ob ta ined  with Gauss ian  basis sets [8]. I t  is not  
surpris ing tha t  very similar  results are ob ta ined  with effective core potent ia ls  
extracted either f rom double-ze ta  basis sets or  extended basis sets; since in bo th  
cases the al l -electron reference results are as accurate  for such atoms.  However  this 
would  not  be t rue for heavier  a toms,  par t icular ly  for d-orbi ta ls  in t rans i t ion  metal  
a toms.  On the other  hand  a bet ter  r eproduc t ion  o f  the al l -electron valence orb i ta l  in 
the valence region is ob ta ined  with the procedure  presented in this paper  (see Fig.  1). 
M:oreover it  must  be not iced tha t  the resolut ion o f  the a tomic  valence Hami l ton ian  
with the Gauss ian  basis set yields orbi ta ls  which reproduce  well the given pseudo-  
orbitals .  Graph ica l  representa t ions  do no t  pu t  into evidence any differences and  
are no t  reproduced  in this paper .  

4.  M o l e c u l a r  R e s u l t s  

The different expressions of  the effective core potent ia ls  were used in S C F  calcula-  
t ions of  the d ia tomic  molecules H F ,  HC1, A1H, A1F, A1CI, F2, C12, which were 
carr ied out  with the modif ied version o f  the I B M O L  [6] or  H O N D O  [9] programs.  

F o r  the hydrogen  a tom we used the 4s3p Gauss ian  basis set r epor ted  in Ref. [10]. 
In  the case of  F,  A1 and C1 a toms  we used the various opt imized  s and  p valence 
basis sets cor responding  to each effective core potent ia l  augmented  with one or  two 
d po la r iza t ion  functions.  The  single d exponents  are t aken  f rom Roos  [11]; two d 
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exponents  are derived by  mul t ip ly ing the second p exponent  in ascending order  by 

0.5 and 2.0. F o r  the sake of  brevi ty the different basis sets are not  included here 
bu t  are  avai lable  upon  request.  

4.1. Comparison of the Different Expressions of the Pseudopotential Operator 

F o r  each molecule  'Table 3 displays the spectroscopic  constants  ob ta ined  f rom a 
pa rabo l i c  fit o f  three calcula ted points  a round  the min imum of  the potent ia l  curves. 
The results co r respond  to a cons tant  qual i ty  valence basis set of  four  uncon t rac ted  
Gauss ian  funct ions for  F,  A1 and CI augmented  with one d po la r iza t ion  function.  
Al l  Gauss ian  funct ions are kept  free for the hydrogen  a tom.  

The good  stabil i ty o f  the results with respect  to the different core potent ia ls  can be 

noticed.  The b o n d  length in the molecules conta in ing  an a lumin ium a tom is slightly 
shor tened by the use of  the present  form of  effective potent ia l ,  and  it is the only 
general  t rend  which appears  f rom Table  3. This can be related to a bet ter  reproduc-  
t ion of  the valence orbi ta l  in the present  technique as shown in Fig.  1. On the one 
hand  it is sat isfactory to note  the insensit ivity o f  the spectroscopic  constants  when 
different analyt ica l  expressions are used to describe the core potent ia l  cor responding  
to a given pseudoorb i t a t  (pseudopotent ia ls  I I I  and  IV). On the other  hand  little 
deviat ions result  f rom a different choice o f  the inner  par t  of  the pseudoorb i t a l  as i t  

Table3. Comparison between valence electron molecular 
results obtained with various effective potentials 

Pseudo- 
potential 

Molecule type re A oJ~ cm- 1 D~ eV /ze D 

HF I 0.901 4432 4.38 1.92 
II 0.898 4460 4.38 1.91 

III 0.900 4481 4.34 1.88 
IV 0.900 4479 4.32 1.87 

AIH I 1.666 1723 2.32 0.18 
II 1.650 1676 2.34 0.25 

I l l  1.647 1671 2.35 0.25 
IV 1.647 1670 2.35 0.25 
V 1.650 1667 2.31 0.24 

HC1 I 1.274 3198 3.57 1.27 
III 1.275 3159 3.47 1.28 
IV 1.275 3160 3.47 1.28 

AIF I, I 1.698 908 4.96 1.63 
IV, III 1.668 869 5.04 1.69 

AICI I, I 2.194 526 4.17 1.98 
IV, III 2.177 617 4.11 1.98 

FF I 1.344 1071 -- 1.28 - -  
III 1.323 1035 - 1.31 - -  

CIC1 I 1.995 571 1.04 - -  
III 2.003 562 0.81 - -  
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can be seen in the comparison between the II and III cases for AIH and HF. 
Nevertheless the differences remain in the range of 1-2 per thousand. These calcu- 
lations do not allow any preference between the different shapes of the s-pseudo- 
orbital. Moreover in the case of A1H the core potential extracted from an aluminium 
positive ion (V) does not really modify the calculated molecular constants. This 
supports the validity of the frozen core approximation even for an atom with a 
few valence electrons. 

4.2. Comparison with Elaborate All-Electron Results 

The reference to the elaborate all-electron (AE) [12-15] results and to the corre- 
sponding experimental data [16] are to be found in Table 4. Note first that spectro- 
scopic constants are sensitive to the number of points used to represent the potential 
curves as shown by the three points and five points interpolated values given for 
HF and A1H. Therefore, in order to compare the valence electron (VE) results of 
Table 3 with the AE values, spectroscopic constants were recalculated from a 
parabolic fit of three points around the minimum when AE calculations were 
available. 

4.2.1. Hydrides 

The comparison between the results reported in Tables 3 and 4 shows that VE 
calculations give results close to those obtained by Meyer [12] with extended 
Gaussian basis sets in AE calculations. It can be noticed that in the VE calculations 
we used very few polarization functions as compared to the AE calculations [12]. 
Nevertheless it is rather surprising that in the case of the hydrogen fluoride molecule 
the description of the valence orbital of fluorine by five Gaussian functions (results 
in Table 4) instead of four is sufficient to obtain a potential curve quite identical to 
the AE one. The lack of polarization functions has greater effects on the second- 
row hydrides. A better description of the valence orbital of the chlorine atom does 
not change the VE results but the introduction of two d polarization functions 
improves significantly the comparison with AE results. Note that the important 
value of the derivative of the dipole moment function at re explains the apparently 
great discrepancy found for the dipole moment of A1H. 

4.2.2. A1F 

The two AE reference calculations [13, 14] were done with the same extended basis 
set of Slater functions except for the exponent of one d polarization function. The 
different results obtained emphasize the role of the polarization functions. More- 
over in the VE calculations the replacement of the d polarization exponent of 
aluminium by two exponents leads to results in satisfactory agreement with the AE 
reference values. 

4.2.3. AIC1 

Because of the lack of extended basis set AE calculations the VE results can only be 
compared to experimental data. By analogy with the A1F case we might expect a 
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Table 4. Comparison between all-electron (AE) results, valence 
electron (VE) results and experimental data 

re/~ o~e cm-1 De eV /~e D 

H F  exp a 0.917 4139 6.12 1.83 
AE b 0.898 4476 4.32 1.90 

(3) z 0.901 4473 
(5) 0.897 4502 

VE ~ (3) 0.901 4471 4.32 1.89 
(5) 0.897 4499 

A1H exp ~ 1.646 1683 3.01 
AE b 1.647 1731 2.38 0.11 

(3) 1.654 1765 
(5) 1.648 1725 

VE a (3) 1.647 1670 2.35 0.25 
(5) 1.645 1706 

HC1 exp a 1.275 2991 4.62 1.09 
AE b 1.266 3141 3.49 1.2 

(3) 1.268 3116 
VE e 1.275 3164 3.47 1.26 
VE f 1.272 3145 3.49 1.22 

A1F exp ~ 1.654 802 6.89 1.53 
AE g 1.658 942 
AE ~ 1.638 831 
VE l 1.654 863 5.29 

AIC1 exp ~ 2.13 481 5.08 1-2 
VE j 2.176 502 4.19 

FF  exp a 1.417 892 1.44 
AE ~ 1.338 1259 -1 .11  
VE a 1.323 1035 - 1.31 

C1C1 exp ~ 1.988 560 2.48 
AE k 1.991 603 1.16 
VE a 2.003 562 0.81 

a Ref. [16]. 
b Ref. [12]. 
~ Effective potential III, basis set 5s/5p/ld for fluorine. 
a Same as Table 3. 
e Effective potential III, basis set 5s5pld for chlorine. 

Effective potential III, basis set 4s4p2d for chlorine. 
g Ref. [13]. 
h Ref. [14]. 

Same as in Table 3 but 4s4p2d basis set for aluminium. 
J Same as in Table 3 but  4s4p2d basis set for chlorine. 

Ref. [15]. 
z Number  of points used to represent the potential curve. 

c a l c u l a t e d  e q u i l i b r i u m  d i s t a n c e  s h o r t e r  t h a n  t he  e x p e r i m e n t a l  one .  T h e  V E  resu l t s  

d o  n o t  ag ree  w i t h  th i s  c o n j e c t u r e  b u t  t he  a d d i t i o n  o f  a s e c o n d  p o l a r i z a t i o n  f u n c t i o n  

to  t he  c h l o r i n e  a t o m  s ign i f i can t ly  l ower s  t he  c a l c u l a t e d  b o n d  l eng th .  T h e  s a m e  

i m p r o v e m e n t  o f  t he  v a l e n c e  a l u m i n i u m  bas i s  set  w o u l d  p r o b a b l y  be  efficient.  

B e c a u s e  o f  t he  o n l y  q u a l i t a t i v e  c h a r a c t e r  o f  t he  c o m p a r i s o n  a d d i t i o n a l  c a l c u l a t i o n s  

h a v e  n o t  yet  b e e n  p e r f o r m e d .  
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4.2.4. F2, C12 

Due to the inadequacy of the SCF description of the bonding for these molecules 
comparisons are rather difficult to make since SCF results are very dependent on 
the basis set [3]. Nevertheless the comparison between AE and VE calculations 
seems satisfactory. There is no evidence for specific problems similar to those 
reported by Hay et al. [17]. We may notice that our d effective potential does not 
present any artifactual attractive tail despite a derivation of d potential from 
excited states of the chlorine atom. 

4.3. Contractions of the Basis Set 

The effects of the contractions of the basis sets described in Sect. 1 were investigated 
in a limited number of cases. Two main conclusions arise from the results displayed 
in Table 5: 
1) For a given contraction the variation due to the use of the different forms of the 

effective core potential are similar to those obtained with uncontracted basis sets. 
2) Triple-zeta basis sets provide a representation flexible enough for the valence 

orbitals. 

Table 5. Influence of basis set contraction on the calculated spectro- 
scopic constants 

Atom 1 Atom 2 re/~ ~o~ cm-1 De eV 

A1 H 
I a 31/31/1 b 31/3 1.676 1785 2.30 

II 31/31/1 31/3 1.662 1707 2.29 
III 31/31/1 31/3 1.664 1724 2.29 
IV 31/31/1 31[3 1.664 1721 2.29 
III 211/31/1 31[3 1.658 1694 2.31 
IV 211/211/1 31/3 1.658 1696 2.31 
III 211/211/1 31/3 1.649 1668 2.33 
III 211/211/1 211/3 1.651 1669 2.34 

C1 H 
III 31/31/1 31[3 1.281 3221 3.41 
III 211/211/I 211/3 1.275 3163 3.45 

AI F 
I 31/31/1 I 31/31/1 1.715 941 4.80 

IV 31/31/1 III 31/31/1 1.695 935 4.94 

a Potential type, see Table 1. 
b Number of primitives in each contracted function. Symmetry s pd. 

5. Conclusion 

This work presents a procedure to extract elaborate pseudopotentials from accurate 
analytical atomic calculations. The pseudopotential receives a given semi-local 
analytical form; starting from a near Hartree-Fock all-electron calculation per- 
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formed in a large Slater orbital basis set, the HF energy levels and the outer part 
of the HF orbitals must be reproduced by the valence Hamiltonian solution using 
somewhat smaller basis sets. A few arbitrary points are inherent to this procedure, 
namely the inner part shape of the valence pseudoorbital and the analytical form 
of the potential. The numerous tests performed in the present work show the 
stability of the molecular results with respect to these degrees of freedom. This 
verification is only done for the precise algorithm of the Barthelat-Durand pseudo- 
potentials but we believe that it remains valid for the whole class of  semi-local 
potentials extracted from both the energy and the wave-function, such as those 
proposed by Kahn et al. [18] and Topiol et al. [19]. 

A more important point concerns the quality of the valence basis set. Double-zeta 
valence basis sets optimized in valence atomic calculations provide reliable results. 
The simulation of accurate all-electron results is possible but requires the enlarge- 
ment of the valence basis set somewhat diminishing the practical advantage of  the 
pseudopotential technique. 

From a more general point of view, one may notice the existence of  two possible 
pseudopotential strategies; 

1) The first one which is followed in the present paper tries to extract from the best 
atomic calculation the best pseudopotential which will give the right answer to 
valence basis set extensions; with such a pseudopotential, no accident is to be 
expected in the molecular calculation but its counterpart is the requirement of a 
sufficiently large basis set. This procedure remains interesting for spectroscopic 
studies of small molecules, but at the present stage it cannot provide a reasonable 
answer for heavy atoms containing large molecules, the size of which prevents 
from going beyond the minimal basis level. 

2) An alternative strategy would consist in extracting the pseudopotential using a 
poor description of the valence pseudoorbital (for instance a three-contracted 
Gaussian description) but the correct energy level. Such a pseudopotential could 
not give the right answer to basis set extensions but when applied in a molecule 
with the same minimal basis set as that used in the extraction procedure, it 
should give at lower cost better results than all-electron calculation performed 
with a minimal basis set. This strategy is under investigation and should make 
feasible calculations on large molecules according to the original spirit of  
pseudopotential research. 

Acknowledgement. We wish to thank Dr. J. C. Barthelat and Dr. J. P. Malrieu for many helpful 
discussions. 
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